APPENDIX SES2.3

PIPELINE ENGINEERING ASSESSMENT REPORT

PINS document reference: 14.6.2.3

REPORT ON ISSUES CONCERNING THE ANGLIAN WATER SERVICES WATER MAINS CROSSING THE AUGEAN SITE

Sandra Rolfe-Dickinson

WS010005/14.6.2.3

May 2022

Table of Contents

1	Introduction	1
2	Pipe Material	1
3	Potential breach of mains	4
4	External loading & potential for damage	5
5	Potential size of crater in the event of pipe rupture	9
6	Stability of pipelines due to excavations & effect of shrink/swell clays	11
7	Access for pipe repair	12
8	Effect of water in pipeline embedment	14
9	Conclusions	15
Refer	ences	16

LIST OF FIGURES

Figure 1 – Vehicular loading	6
Figure 2 – Structural analysis using a 7.1mm wall thickness	7
Figure 3 – Structural analysis using a 5.5mm wall thickness	8
Figure 4 – Diameter of failure crater	. 10
Figure 5 – Profile of the ground between Wing WTW and Peterborough	. 11
Figure 6 – Zone of influence around a buried pipeline	. 12
Figure 7 – Access requirements	. 13

APPENDICES

Appendix A	Vehicular loading analysis
Appendix B	Structural design of steel pipelines at 1.2m and 3m burial depth

1 Introduction

- 1.1 Pipetechnics Ltd was engaged by Augean South Ltd to examine specific potential issues raised by Anglian Water Services (AWS) pertaining to their existing steel 800mm diameter twin water mains. These water mains cross diagonally through the site of the proposed future western expansion at the Augean site and adjacent to the existing East Northants Resource Management Facility (ENRMF).
- 1.2 The concerns raised by AWS relate to how the pipelines might be affected by being left insitu (rather than being diverted away from the active site). These issues include:
 - Potential failure of the pipelines, including crater size and access for repair.
 - External loading on the pipelines from equipment used to manage the Augean site.
 - Effect of excavations at the Augean site on the pipelines.

2 Pipe Material

2.1 It is understood from AWS that the twin pipelines crossing the Augean site are made of steel. To date, no as-built information has been provided, so reasonably worst-case assumptions have been made regarding the original wall thickness of the pipes, the grade of steel from which they were manufactured, the coating and lining provided to the pipes, and their burial depth.

- 2.2 Steel is a ductile pipeline material, which can be susceptible to corrosion if it is not adequately protected. Steel is very strong in tension, and therefore the wall thicknesses used in water pipelines are generally governed by the handling, welding and installation requirements, rather than their ability to resist internal pressure. This is particularly true in the water industry, where operating pressures are generally low compared to, for example, oil pipelines.
- 2.3 If failures of the steel pipe body occur, they are most often associated with through wall corrosion, rather than a catastrophic burst that can be seen in more brittle materials, such as cast iron. More serious issues can occur at the welded joints, if these have not been correctly executed and supervised, or if, during construction, pipe alignments are not correct. As an example, I have investigated the failure of a large diameter welded steel special (a bespoke, factory-made bend). In this case, steel pipework laid under two different contracts was to be pieced together with a shop-made steel special. The alignment of the two legs of pipework was not accurate, and there was about a 5mm mismatch. The pipes were forced to fit the steel special, and were welded up, but less than a year later one of the welds had "let go" due to the stress it was under. I have heard of cases (but I don't have direct experience) of welds also "letting go" where unaccounted for differential settlement of the pipeline has put undue stress on welds.
- 2.4 Steel pipes can be typically supplied in lengths of 6m, 9m and 12m, so there could be in the region of 30 to 55 joints per pipeline in the length crossing the ENRMF site.
- 2.5 The precise age of the pipelines is not known at this time, but it is assumed that they were laid within the last 25 years based on the

Report No:

PT/AU/001

known diversion of the pipelines during the development of the existing landfill site. Given this information, it seems likely that the pipes were supplied by FT Pipelines (formerly known as Frazer & Tabberer).

- 2.6 Where bends and fittings are present in pressurised water mains, thrust forces are generated due to changes in pipeline diameter or direction. These forces are countered by the provision of thrust restraint. This can take the form of concrete thrust blocks, designed to resist the forces generated, or by joining pipes together by welded or anchored joints, and resisting the generated forces by the friction created between the embedment soil and the walls of the pipeline along the length of the continuous pipework.
- 2.7 The benefit of welding the joints means that thrust forces generated by the under-pressure water can be accommodated at changes of direction in the pipeline, without the need for large concrete thrust blocks.
- 2.8 Typically, the structural design of buried pipelines is concerned with the response of the pipe cross section when subjected to loads from both soil backfill and any vehicular loading. Steel pipes are generally classified as flexible in their behaviour, since their response to external load is to deflect into an out-of-circle shape.
- 2.9 The lining (internal protection) and coating (external protection) of the pipelines is also not known. Steel pipes are generally supplied with either a cement mortar lining, or an epoxy lining. Limits of pipe deflection are specified in order to ensure no damage occurs to the internal linings when the pipeline deflects into an out-of-circle shape. For this reason, a cement mortar lining has been assumed in the structural calculations, as this has a slightly more onerous deflection limit (3%, compared with an epoxy lining of 5%).

2.10 There have been no failures of the pipelines crossing the ENRMF site, although it is understood from AWS that there has been prior leakage on one of these pipelines in a different location.

3 Potential breach of mains

- 3.1 As indicated previously, the most likely failure scenario is a small, through-wall corrosion leak. Left undetected, small leaks can develop, and lead to loosening of the pipe embedment, and potential loss of support locally to the pipelines. Ultimately, this could lead to a more catastrophic failure.
- 3.2 It is not known whether these pipelines are already acoustically monitored, but if they're not, it would be possible to install equipment to specifically monitor the section of pipeline crossing the Augean site. Typically, this would consist of a pair of monitoring devices (ultrasonic / acoustic / correlators) which could be fixed to the outside of the pipelines at each end of the section to be monitored. These would detect any low-level leaks that may be developing in the pipelines, giving operators the location of the defect to enable a timely repair to be carried out.
- 3.3 It was indicated by AWS at the hearing held on 8th June 2022 that the pipelines have an impressed current cathodic protection system in place, but they were unsure whether or not this was working. Cathodic protection is a process by which steel pipelines are electrically protected, either by provision of sacrificial anodes, or by application of an impressed current. It is typically used in more aggressive ground conditions as a back-up corrosion control measure in the event of damage to the external pipe coating.

4 External loading & potential for damage

- 4.1 Standard vehicular loading applied to pipeline structural design is laid out in BS EN 1295-1 (1997) National Annex A (likely to be the standard in place when the pipelines were laid), or in the more recent BS 9295 (2020). Both give vehicular loadings at various depths of cover for standard scenarios of main roads, light roads (omitted from BS 9295), and fields, as well as construction plant and rail loadings. The loadings incorporate an impact factor, to account for the dynamic effect of the vehicle movements. Vibration effects are not taken into account separately and are usually only considered where buried pipelines are likely to be subjected to the effects of piling or explosions arising from mining etc.
- 4.2 For more specific types of plant, a bespoke analysis can be carried out using Holl's integration of the Boussinesq equation. This is a standard way in pipeline engineering to evaluate the pressure at pipe crown of loads applied at the ground surface, and the procedure is laid out in the TRRL document "A guide to design loadings for buried rigid pipes" (1983), Appendix 2. The types of plant that would likely be used in the future development of the Augean ENRMF site have been analysed in this way, which has yielded the following results, for two likely burial depth scenarios. The burial depths used are 1.2m cover, a typical burial depth for water mains, and an indicated likely depth from AWS, and 3m cover, an estimated likely worst-case burial depth. The details of this analysis can be found in Appendix A.

Report No: PT/AU/001

Vehicle	Load at pipe crown at 1.2m cover depth (kN/m ²)	Load at pipe crown at 3m cover depth (kN/m ²)	Image
Hitachi ZX670LCH-3 or similar	77.59	18.93	
A40 dump truck or similar	108.31	35.90	

4.3 These loadings have then been taken forward in calculations laid out in BS 9295 (2020) "Guide to the structural design of buried pipes". The pipelines are currently in a loading condition that would be defined in the current standard BS 9295 (2020) as "Fields & Gardens". In the earlier standard, BS EN 1295-1 National Annex A, this loading would have been classified as "Fields" (numerically, these two loading scenarios are the same). The date at which the pipelines were installed is not known, but is assumed to be approximately 25 years ago. Therefore, the standard that would have been used for the original structural pipeline design would have been BS EN 1295-1

May 2022

(1997) "Structural design of buried pipelines under various conditions of loading".

- 4.4 The standard wall thickness for an 800mm diameter steel pipe supplied by Frazer and Tabberer is 7.1mm, which is a typical value for steel pipes of this diameter supplied to the water industry.
- 4.5 Steel pipes are generally classified as flexible in their behaviour, since their response to external load is to deflect into an out-of-circle shape. Calculations have been undertaken, following the procedure set out in BS 9295 (2020), Section 7 "Flexible Pipe Design". The details of this analysis can be found in Appendix B. Figure 2 below summarises the results using the original wall thickness of 7.1mm. Figure 3 shows the results using a reduced wall thickness scenario of 5.5mm (a corrosion allowance around the full circumference of 1.6mm).

Figure 2 – Structural analysis using a 7.1mm wall thickness

		Burial depth = 1.2m Pipe wall thickness = 7.1mm			
		Field loading (current scenario)	A40 Dump Truck	Large Excavator	
Earth Pressure	kN/m2	23.76	23.76	23.76	
Vehicular loading	kN/m2	27.21	108.00	77.59	
Total pressure	kN/m2	50.97	131.76	101.35	
FOS against buckling	Must be >2	7.83	3.06	3.98	
Ovalisation	Must be < 3%	1.05	2.39	1.88	

		Burial depth = 3m				
		Pipe wall thickness = 7.1mm				
		Field loading (current scenario)	A40 Dump Truck	Large Excavator		
Earth Pressure	kN/m2	59.40	59.40	59.40		
Vehicular loading	kN/m2	5.47	35.90	18.93		
Total pressure	kN/m2	64.87	95.30	78.33		
FOS against buckling	Must be >2	6.18	4.23	5.13		
Ovalisation	Must be < 3%	1.97	2.60	2.25		

Figure 3 – Structural analysis using a 5.5mm wall thickness

		Burial depth = 1.2m Pipe wall thickness = 5.5mm			
		Field loading (current scenario)	A40 Dump Truck	Large Excavator	
Earth Pressure	kN/m ²	23.76	23.76	23.76	
Vehicular loading	kN/m ²	27.21	108.00	77.59	
Total pressure	kN/m ²	50.97	131.76	101.35	
FOS against buckling	Must be >2	6.09	2.39	3.09	
Ovalisation	Must be < 3%	1.20	2.73	2.15	

		Burial depth = 3m				
		Pipe wall thickness = 5.5mm				
		Field loading (current scenario)	A40 Dump Truck	Large Excavator		
Earth Pressure	kN/m ²	59.40	59.40	59.40		
Vehicular loading	kN/m ²	5.47	35.90	18.93		
Total pressure	kN/m ²	64.87	95.30	78.33		
FOS against buckling	Must be >2	4.81	3.29	3.99		
Ovalisation	Must be < 3%	2.25	2.97	2.57		

- 4.6 These results show that, whilst the pipelines may not have been originally designed to accommodate significant vehicular loading, the pipelines comfortably pass the ovalisation check, and have a factor of safety against buckling significantly greater than the required value of 2 in all loading cases, using the original wall thickness. Even at a reduced pipe wall thickness of 5.5mm, the structural calculations pass all the required design checks. This demonstrates that there is a very low risk of an increased vehicular loading being detrimental to the integrity of the pipelines.
- 4.7 Despite the results of the analysis above, it is recommended that designated crossing points are constructed to allow vehicular movement across the pipelines, simply to ensure that the ground surface doesn't deteriorate. Rutting of the ground surface could result in wheel loads becoming unacceptably close to the pipeline crowns, and this should be avoided. However, the analysis has shown that the predicted loads are unlikely to compromise the

structural integrity of the pipelines. The options for the crossing detail could range from a simple slab or crane mat at ground level, in order to protect the ground surface and spread the loads, to a piled bridge construction which would take any loads to below the invert level of the pipelines. A piled bridge solution is seen as an extreme solution not justified by the preliminary analysis undertaken, and whose construction would introduce new risks of load and vibration in close proximity to the pipelines. For these reasons, the piled bridge option is not a preferred crossing solution.

5 Potential size of crater in the event of pipe rupture

- 5.1 The potential size of crater has been calculated using geometry, for a number of different burial depths, and assuming a worst-case scenario of both pipelines failing. An angle of repose of 45 degrees has been used, which is a very conservative estimate for the stiff clay found in the boreholes on site (this angle of repose is more commonly used with looser, granular soils). An average pipe spacing centre to centre of 5m has been assumed.
- 5.2 Although a burial depth to pipe crown of 1.2m has been indicated by AWS, a further conservative estimate of 3m burial to pipe crown is suggested as a reasonable worst-case assumption. As can be seen from Figure 3 below, this would lead to a crater size of diameter approximately 12.6m.

Report No: PT/AU/001

5.3 It has been indicated by AWS that the pipelines run at a pressure of 8 bars. They are gravity fed from the Wing WTW, taking potable water to the city of Peterborough. Examination of the topography of the land between Wing and Peterborough, and accounting for the level at the Augean site would suggest that the likely pressure in the mains at the Augean site is approximately 2.6 bars. This is shown in Figure 5 below:

5.4 Despite the apparent pressure at the ENRMF site being approximately2.6 bars, the structural design calculations have been undertakenusing an internal pressure of 8 bars as stated by AWS.

6 Stability of pipelines due to excavations & effect of shrink/swell clays

- 6.1 It is understood from the soils investigations undertaken at the ENRMF site that the soils are stiff clays, which may be subject to shrink / swell upon loading and unloading.
- 6.2 When designing new pipelines, it is generally accepted that when the trench width is greater than 4.3 multiplied by the pipe outside diameter, the effect of the native soil to the sides of the pipe are ignored (see BS 9295 (2020) section 7.2.5). It is stated in Section 4.6 of that standard that "the zone of soil which has a structural

influence on the buried pipe typically extends between one and two diameters from the pipe wall in all directions" (see Figure 6).

6.3 The stand-off dimension proposed by Augean of between 7m and 30m is more than adequate in all cases to ensure that the pipelines will be unaffected by any excavations taking place, and the presence of the excavation activity will not increase the likelihood of pipe failure from the shrink/swell effects associated with the excavation of the clay.

7 Access for pipe repair

7.1 A key consideration is the future access to the full length of the pipelines crossing the ENRMF site for maintenance purposes. The worst-case scenario is that of a catastrophic burst affecting both pipelines, as outlined in Section 5 above.

Report No: PT/AU/001

7.2 If a burst were to occur, the following general steps are taken:

- Isolation of the affected pipeline.
- Removal of water at ground level and in crater.
- Secure the crater to allow safe access and establish safe working area.
- Repair can commence.

When a repair is undertaken, every effort is made to ensure the cleanliness of the pipeline is not compromised. Water and soil debris are kept away from the internal surfaces of the existing pipeline, the repair piece and couplings. AWS will have strict protocols regarding mains repair to ensure no contamination of the water occurs, and typically this will include spraying repair pieces and fittings with chlorous acid or similar, flushing of the main, and bacteriological sampling after completion of the repair to demonstrate water hygiene compliance.

7.3 All the activities for the repair of a pipeline burst outlined in 7.2 above can be safely carried out within the proposed stand-off distances of 7m to 30m, and well within the 20m stated as preferred by AWS.

8 Effect of water in pipeline embedment

- 8.1 Anecdotally, the pipelines do not have a full gravel embedment. It has been indicated by AWS that the pipelines are laid in gravel to their haunch level, with the remaining backfill being an as-dug material.
- 8.2 Generally, gravel pipe embedment can act like a land drain, and for this reason, it is good practice that impermeable layers are placed at regular intervals across the pipe trench in order to discourage the flow of water within the embedment. Whilst it is not known if this was done during the construction of the pipelines, since it is general good practice, it is assumed to have taken place.
- 8.3 If the ground water is static, it is unlikely to cause deterioration of the pipeline coatings, or to cause a loss of support to the pipelines. The groundwater body at the site is well below the level of the pipelines

and, as addressed in the Pipeline Risk Assessment report, the Surface Water Management Plan is designed to maintain the surface water flow to follow the pre-development pattern.

9 Conclusions

- 9.1 The steel pipeline material is ductile, and any deterioration is likely to come about via local through wall corrosion, rather than catastrophic rupture.
- 9.2 The pipelines can be readily monitored to mitigate the risk of leakage / corrosion effects.
- 9.3 External loads placed on the pipelines due to future plant and equipment is unlikely to cause detriment to the pipelines as long as the surface is appropriately protected.
- 9.4 In the very unlikely event that a pipeline rupture were to occur, involving the failure of both pipelines together, the likely diameter of the resulting crater is around 12.5m (from a reasonable worst-case assumed pipeline burial depth of 3m).
- 9.5 The pressure in the pipelines at the Augean site is likely to be approximately 2.6 bars.
- 9.6 Water in the pipeline embedment should not significantly increase the risk of corrosion.
- 9.7 The suggested stand-off range of between 7m and 30m proposed by Augean includes the 20m distance preferred by AWS which is more than adequate to allow for the access, maintenance and repair of the pipelines, even in the unlikely event of a significant rupture.

References

BS 9295 (2020) – Guide to the structural design of buried pipes under various conditions of load.

BS EN 1295-1 (1997) – Structural design of buried pipelines under various conditions of loading

TRRL – A guide to design loadings for buried rigid pipes (1983).

APPENDIX A

Vehicular loading analysis

		\sim							DOCUMENT No	
3	Pipetec	nnics Itd.		CAL	CUL	ATION F	PACK	PT/AU	/Vehicular loads_	_1.2m
		PRO	DJECT NO.	PROJECT TITLE						
			N/A		Augean / ENRMF site					
				SUBJECT					SHEET No	
	V	ehicular	loading c	alcs @ 1.	2m de	pth of cover		1	of	3
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	3	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3										
4 SUP	ERSEDES	DOC No						DATE		
DESIGN	BASIS S	TATEMENT	l (Inc. sources	of info/data, a	assumptio	ns made, standards	s, etc.)			
Sou	rce of Inf	D	_	_				_		
1. ENF	RMF DCO	Application	Anglian Water	Pipelines. T	able 1 Sco	oping Table for Sce	narios of Risł	Assessmer	nt	
2.										
3.										
Sta	ndards an	d Referenc	es							
4. TRF	RL A guide	e to design lo	oadings for bu	ried rigid pipe	s, Append	dix 2				
5.										
6.										
7.										
Ren	nit									

Wheel Arrangement

valiable iliputs		
Vehicle Axle Spacing 1 (m)	4.448	Dimension F
Vehicle Axle Spacing 2 (m)	1.94	Dimension G
Vehicle Axle Length (m)	2.636	Dimension V/Y
Load per axle (front) kg	19170	
Load per axle (rear) kg	90000	
Load per Wheel (front) (kN)	94.03	
Load per Wheel (rear) (kN)	220.73	
Wheel Impact Factor	1.7	Construction plant (ref TRRL)
External Pipe Diameter (m)	0.81	

Load Calculations

consideration (m)	1.2
being considered	Value IQ
AQTS	0.100
ARVS	0.100
KLBQ	0.054
JMZE	0.244
JKYE	0.243
SVZE	0.237
STYE	0.236
KLFT TUEV	0.118
OCWT	0.009
BCWV	0.000
KNGY	0.237
MNGZ	0.215
TWGY	0.231
VWGZ	0.211
Load Coeff for Each Wi	neel
A	0.000339
В	0.217229
С	0.012371
E	0.000165
F	0.003469
G	0.001377
Sum of Load Coeff (front	0.000503
Load (front) (kN)	0.080478
Sum of Load Coeff (rear)	0.234446
Load (rear) (kN)	87.971580
TOTAL LOAD (kN)	88.052
Total Pressure on Pipe	400.005
Crown (kN/m ²)	108.305

MNGZ
TWGY
VWGZ
Results Summary

al Rectangle

AQTS

ARV

KLBC

JKYE SVZE STYE

KLFY

TUFY

RCWV KNGY

Dimen B

0.407

0.407

0.407 3.043

3.043 2.230 2.230 3.043

2.230 0.407

0.407

3.043 2.230

2.230

1s (m)

3.948 4.948

0.5 4.948

3.948 4.948 3.948

0.5

0.5

1.44

1.44 2.44

1.44

Whee

Α

В

Е

F

С

G

ł

Depth to Pipe	Pre

Depth to Pipe	Pressure
Crown (m)	(kN/m2)
1.2	108.305

A40D 29,5R25**

16 300 kg 35 935 lb

37 000 kg 81 571 lb

68 270 kg 150 509 lb

A40D

37 000 kg 41 sh tn

16,9 m³ 22.1 yd³

22,5 m³ 29.4 yd³

17,2 m³ 22.5 yd³

23,2 m³ 30.3 yd³

Data Sheets

				ZX6	706.C-40	
Shoe type	Shoe width	Boom type	Arm type	Ng	kPa (kgf/omi)	
		6.6 m ttE	2.9 m BE	87.300	101 (1.03)	
		Bucket (apacity	3	1.5 m#	
	100000	78 m	3.6 m	05-800	100 (1.02)	
	600 mm	Bucket capacity		2.8 m ^a		
		7.8 m	4.2.約	67.000	101 (1.02)	
		Bucket capacity		2.6 m#		
		6.8 m HE	2.0 m BE	67 600	88 (0.90)	
		Buchel of	specity	3	1.5 m²	
		7.8 m	0.6 m	67 200	87 (0.89)	
Donge	100 mm	Bucket capacity			13 m ^a	
		7.8 m	4.2 m	67.400	88 (0.89)	
		Buchet	appointy	2	5 m ⁸	
		6.8 m BE	2.9 m BE	.68 700	74 (0.76)	
		Bucket	spacity		1.5 m ^{pt}	
	and the second	7.8 m	3.6 m	88 200	74 (0.75)	
	S00 mm	Bucket	apecity	2	9 m ^a	
		7.8 m	4.2 m	68 400	74 (0.76)	
		Thirdent /	uniority .		5 mě	

	s land		Circ. II
Retractable g	auge	ZX670LC-sq	ZX670LCH-sq
A Distance between tumble	18	4 590	4 590
B Undercarriage length		5 840	5 840
*I C Counterweight clearance		1 530	1 530
D Rear-end swing radius		4 020	4 020
D' Rear-end length		3 910	3 910
E. Overall width upperstruct	th upperstructure 4 090 4 090		4 090
F Overall height of cab		3550	3 660
*1 G Min. ground clearance		860	860
H Track gauge : Extended /	Retracted	3 300 / 2 830	3 300 / 2 830
I Track shoe width		650 / 750 / 900	650
J Undercarriage width	with 650 mm shoe	3 950 / 3 480	3 950 / 3 480
: Extended / Retracted	with 750 mm shoe	4 050 / 3 580	-
	with 900 mm shoe	4 200 / 3 730	-
K Overall width		4 360	4 360
L. Overall length		13 400	13 400
M Overall height of boom		4 460	4 460
N Track height		1 440	1 440

Wheel Arrangement

Calculations

Wheel	Virtual Rectangles	DI	mensions (m)
		В	L
Α	AQTU	0.4065	0.5
в	BQTW	0.4065	5.09
	BRVW	0.4065	4.09
	CLKY	3.2365	0.5
C	CUTY	2.4235	0.5
D	DNKY	3.2365	5.09
	DWTY	2.4235	5.09
	DNMZ	3.2365	4.09
	DWVZ	2.4235	4.09

Variable Inputs

		-
Vehicle Axle Spacing 1 (m)	4.59	Dimen
Vehicle Axle Length (m)	2.83	Dimen
Total operating weight (kg)	68700	Worst
Assumed Load per Wheel (kN)	168.49	
Wheel Impact Factor	1.7	Construc
External Pipe Diameter (m)	0.81	

nsion A Ision H t case

ction plant (ref TRRL)

Load Calculations Depth under

consideration (m)	1.2
Virtual Rectangle	Influence
being considered	Value IQ
AQTU	0.054
BQTW	0.100
BRVW	0.100
CLKY	0.119
CUTY	0.117
DNKY	0.245
DWTY	0.240
DNMZ	0.244
DWVZ	0.239
Load Coeff for Each	Wheel
A	0.217229
В	0.000292
С	0.002566
D	0.000134
Sum of Load Coeff	0.220
Total Load (kN)	63.077
Total Pressure on	77.586
Pipe Crown (kN/m ²)	

Results Summary Depth to Pipe Crown (m) 1.2 Pressure (kN/m²) 77.586

									DOCUMENT No	
1	Pipetechnics Itd.			CALCULATION PACK				PT/A	U/Vehicular loads	s_3m
	PROJECT NO. PRO					JECT TITLE				
	N/A Augean / ENRMF site									
	SUBJECT SHEET No									
	١	/ehicula	r loading	calcs @ 3	3m dep	th of cover		1	of	3
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	3	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3 4										
SUP	ERSEDES	DOC No						DATE		
DESIGN	BASIS S	TATEMENT	(Inc. sources	of info/data, a	assumptio	ns made, standards	s, etc.)	· · · ·		
Sou	rce of Inf	D								
1. ENF	RMF DCO	Application	Anglian Water	Pipelines. T	able 1 Sco	oping Table for Scer	narios of Risk	Assessmer	nt	
2.										
3.										
Sta	ndards an	d Referenc	es							
4. TRF	RL A guide	e to design le	oadings for bu	ried rigid pipe	es, Append	dix 2				
5.										
6.										
7.										
Ren	nit									

110111	33 775 lb	35 935 lb
Rear	12 980 kg 28 616 lb	14 970 kg 33 003 lb
Total	28 300 kg 62 391 lb	31 270 kg 68 938 lb
Payload	32 500 kg 71 650 lb	37 000 kg 81 571 lb
Total weight		
Front	17770 kg 39176 lb	19 170 kg 42 263 lb
Rear	43 030 kg 94 865 lb	49 100 kg 108 247 lb
Total	60 800 kg 134 041 lb	68 270 kg 150 509 lb
(441 lb)/ ax A35D with ti A35D with ti A40D with ti (661 lb)/ ax	nt includes all flui res 775/65R29, le res 875/65R29, le	ds and operator add 200 kg add 300 kg
	Load Capacit	у
	1	1

	A35D	A40D
Standard Body		
Load capacity	32 500 kg 36 sh tn	37 000 kg 41 sh tn
Body, struck	15,2 m ³ 19.9yd ³	16,9 m ³ 22.1 yd ³
Body, heaped	20,0 m ³ 26.2 yd³	22,5 m ³ 29.4 yd ³
With overhung tailgat	e	
Body, struck	15,5 m ³ 20.3 yd ³	17,2 m ³ 22.5 yd ³
Body, heaped	20,7 m ³ 27.1 yd ³	23,2 m ³ 30.3 yd ³

Calulations

Wheel	Virtual Rectangles	Dimens	ions (m)
		В	L
	AQTS	0.407	3.948
A	ARVS	0.407	4.948
В	KLBQ	0.407	0.5
	JMZE	3.043	4.948
-	JKYE	3.043	3.948
-	SVZE	2.230	4.948
	STYE	2.230	3.948
E	KLFY	3.043	0.5
r.	TUFY	2.230	0.5
0	QCWT	0.407	2.44
U U	RCWV	0.407	1.44
	KNGY	3.043	2.44
0	MNGZ	3.043	1.44
G	TWGY	2.230	2.44
	VWGZ	2.230	1.44

Results Summarv

Depth to Pipe Crown (m) Pressure (kN/m2) 3.0

Load Calculations

-

Axie Length

- 7 Wheel Arrangement

-

1.0m

> E F F G

Variable Inputs Vehicle Axle Spacing 1 (m) Vehicle Axle Spacing 2 (m) Vehicle Axle Length (m) Load per axle (front) kg Load per axle (front) kg Load per Wheel (front) (kN) Load per Wheel (front) (kN) Load per Wheel (front) (kN)

Wheel Impact Factor External Pipe Diameter (m)

-

- 1

Biameter

4.448 1.94 2.636 19170

90000 94.03 220.73

1.7 0.81

Dimension F Dimension G Dimension V/Y

Construction plant (ref TRRL)

Depth under	
consideration (m)	3.0
being considered	Value IQ
AQTS	0.040
ARVS	0.04
KLBQ	0.010
JMZE	0.193
JKYE	0.190
SVZE	0.17
STYE	0.166
KLFY	0.046
TUFY	0.041
QCWT	0.035
RCWV	0.026
KNGY	0.16
MNGZ	0.11
TWGY	0.142
VWGZ	0.104
Load Coeff for Each Wi	neel
A	0.002412
В	0.041534
с	0.018113
E	0.001398
F	0.010363
G	0.006159
Sum of Load Coeff (front	0.003810
Load (front) (kN)	0.609013
Sum of Load Coeff (rear)	0.076169
Load (rear) (kN)	28.58106
TOTAL LOAD (kN)	29.190
Total Pressure on Pipe	05.00
Crown (kN/m ²)	35.904

Data Sheets

				ZX6	70LC-10
Shoe type	Shoe width	Boom type	Arm Type	Ng	kPa (kgf/om)
		6.6 m #E	2.9 m BE	82.300	101 (1.00)
		Bucket (sepecity		5 m ²
	100000	7.8 m	3.6 m	86.800	100 (1.02)
	600 mm	Bucket capacity		2	19 mil
		7.8 m	4.2.95	67-000	101 (1:02)
		Bucket capacity		2.5 m#	
	· · · · ·	6.8 m BE	2.0 m BE	67 600	88 (0.90)
		Buchel o	apacity	3	5 m²
Provide la construcción de la co	-	7.8 m	0.6 m	67 200	87 (0.85)
Dorpe	500 mm	Bucket of	apacity		3 m ^a
		7.8 m	4.2 m	67.400	88 (0.89)
		Bucket cepekity		2.5 m ⁸	
	2	6.8 m BE	2.9 m BE	.68 700	74 (0.76)
		Bucket o	apacity		5 m
	Sector Control	7.8 m	3.6 m	118 200	74 (0.75)
	SADO IMM	Bucket	apacity	2	9 m ²
		7.8 m	4.2 m	68 400	74 (0.76)
	1	Bucket d	tenerity .	100mm 200	5 m8

-				Unit: mit
	Retractable gauge		ZX670LC-50	ZX670LCH-sq
A	Distance between tumbl	ers	4 590	4 590
B	Undercarriage length		5 840	5 840
* 0	Counterweight clearance	e l	1 530	1 530
D	Rear-end swing radius		4 020	4 020
D	Rear-end length		3 910	3 910
E	Overall width upperstruct	ture	4 090	4 090
F	Overall height of cab		all height of cab 3550 3 66	
*1 G	Min. ground clearance		860	860
H	Track gauge : Extended	/ Retracted	3 300 / 2 830	3 300 / 2 830
	Track shoe width		650 / 750 / 900	650
J	Undercarriage width	with 650 mm shoe	3 950 / 3 480	3 950 / 3 480
	Extended / Retracted	with 750 mm shoe	4 050 / 3 580	-
		with 900 mm shoe	4 200 / 3 730	-
	Overall width		4 360	4 360
L	Overall length		13 400	13 400
M	Overall height of boom		4 460	4 460
N	Track height		1 440	1 440

Wheel Arrangement

Calculations

Wheel	Virtual Rectangles	Di	mensions (m)
		В	L
Α	AQTU	0.4065	0.5
	BQTW	0.4065	5.09
P	BRVW	0.4065	4.09
6	CLKY	3.2365	0.5
C	CUTY	2.4235	0.5
	DNKY	3.2365	5.09
D	DWTY	2.4235	5.09
U	DNMZ	3.2365	4.09
	D\M/\/Z	2 / 225	4 00

Variable Inputs

Vehicle Axle Spacing 1 (m)	4.59
Vehicle Axle Length (m)	2.83
Total operating weight (kg)	68700
Assumed Load per Wheel (kN)	168.49
Wheel Impact Factor	1.7
External Pipe Diameter (m)	0.81

Dimension A Dimension H Worst case

Cro

Construction plant (ref TRRL)

Load Calculations Depth under

Depth under	
consideration (m)	3.0
Virtual Rectangle	Influence
being considered	Value IQ
AQTU	0.010
BQTW	0.041
BRVW	0.040
CLKY	0.047
CUTY	0.043
DNKY	0.202
DWTY	0.179
DNMZ	0.195
DWVZ	0.174
Load Coeff for Each	Wheel
A	0.041534
В	0.002162
С	0.008838
D	0.001192
Sum of Load Coeff	0.054
Total Load (kN)	15.388
Total Pressure on	
Pipe Crown (kN/m ²)	18.928

Depth to Pipe Crown (m) Pressure (kN/m²) 3.0 18.928

APPENDIX B

Structural design of steel pipelines at 1.2m and 3m burial depths

							DOCUMENT No			
Pipetechnics Itd.		CAL	CUL	ATION F	PT/AU/Calcs_1.2m					
		PRO	DJECT NO.				PRC	JECT TITLE		
			N/A				Augean	/ ENRMF	site	
				SUBJECT					SHEET No	
Ste	Steel Pipeline Calculations @ 1.2m cover, wall thickness 7.1mn					7.1mm	1	of	6	
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	6	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3										
4 SUF	PERSEDES	DOC No						DATE		
DESIGN	BA: 0.01									
So	urce of Info	C								
1. EN	RMF DCO	Application	Anglian Wate	Pipelines. Ta	able 1 Sc	oping Table for Sce	narios of Risk	Assessment		
2.										
3.										
Sta	ndards an	d Referenc	es							
4. BS	9295:2020									
5.										
6.										
7.										
Rei	nit									
1.01										
I										

S	
Pipetechnics Ite	1

STEEL PRESSURE PIPELINE

VARIABLE INPUTS	Units	Symbol	Value	Notes (assumed values etc)
Pipe Properties				
Is this calculation for twin steel pipes laid in a single trench?			Yes	Select
Steel Grade			L235	Select pipe grade Assumed - worst case
Internal diameter (Nominal)	m	DN	0.8	Select pipe diameter
External diameter	m	Bc	0.8142	
Wall thickness (standard for the diameter selected)	m	t	0.0071	From look up table
Wall thickness (choose)	m	t	0.0071	Type in value
Poisson's ratio (steel)		v _{steel}	0.3	
Type of pipe lining			Cement mortar	Select Assumed - worst case
Cement mortar lining thickness	m	tL	0.01	
Poisson's ratio (mortar)		v _{mortar}	0.3	
Weight of pipe + cement mortar		kg/m	219	
Poisson's ratio (epoxy)		V _{epoxy}	N/A	
Weight of pipe + epoxy		kg/m	N/A	
Modulus of Elasticity (steel)	MN/m ²	E	207000	Standard value
Second moment of area of pipe wall	m⁴/m	1	2.98259E-08	
Pipe stiffness (no CM lining)	N/m ²	S	11743	
Density of mild steel	Kg/m ³		7850	Assumed
Yield Strength	MN/m2	Fy	235]
Installation variables				
Depth of cover	m	Н	1.2	ENRMF DCO application Table 1
Height of water above pipeline	m	Hw	0	No groundwater found in any borehole
Trench width	m	B _d	7	Assumed original trench width
Soil density	kN/m ³	γ	19.8	Typical value (BS EN 1295-1)
Native soil modulus	MN/m ²	E`3	5	Input soil modulus from BS 9295 Table 13 (stiff clay)
Modulus of surround	MN/m ²	E`2	5	BS 9295 Table 14 (Class B1 85% compacted gravel to pipe haunches)
Thickness of bedding	m		0.15	Assumed - standard value
Deflection lag factor		DL	1.5	BS 9295 Table 14 (85% compacted graded gravel)
Max pressure	bar	Pi	8	ENRMF DCO application Table 1
Min pressure - vacuum ONLY. If vacuum = 0, enter 0.01	bar	Pu	0.01	No vacuum
If twin pipes, spacing between pipes (OD to OD)	m	S	4.816	Leave blank if single pipe

SHEET No.

2 of 6

SHEET No. 3 of

6

Pipe Data

Source: FT Pipelines

https://ftpipelinesystems.co.uk/wp-content/uploads/2012/11/data-sheel-large-bore-welded-joints-nov2012.pdf

		steel wall	Cement mortar	Weight of pipe +	Pressure			
Internal diameter	Outside diameter	thickness*	lining thickness	CM lining	CM lining	epoxy lining	epoxy lining	rating**
m	m	m	m	kg/m	kN/m	kg/m	kN/m	Bar
0.08	0.0889	0.0036	0.003	11.4	0.11	8	0.08	123
0.1	0.1145	0.0036	0.003	14.6	0.14	10.2	0.10	95
0.15	0.1683	0.004	0.003	23.3	0.23	16.3	0.16	73
0.2	0.2191	0.0045	0.004	34.9	0.34	24.4	0.24	64
0.25	0.273	0.005	0.004	46.9	0.46	32.8	0.32	57
0.3	0.3239	0.0056	0.004	60.9	0.60	42.6	0.42	54
0.35	0.3556	0.0056	0.0071	69.4	0.68	48.6	0.48	50
0.4	0.4064	0.0063	0.005	86.4	0.85	60.5	0.59	49
0.45	0.457	0.0063	0.006	77	0.76	55	0.54	33
0.5	0.508	0.0056	0.006	92	0.90	67	0.66	27
0.6	0.61	0.0063	0.008	130	1.28	82	0.80	26
0.7	0.711	0.0071	0.008	164	1.61	106	1.04	26
0.8	0.813	0.0071	0.01	219	2.15	136	1.33	25
0.9	0.914	0.008	0.01	266	2.61	171	1.68	25
1	1.016	0.0088	0.012	333	3.27	213	2.09	24
1.1	1.118	0.01	0.014	417	4.09	256	2.51	25
1.2	1.219	0.01	0.014	485	4.76	315	3.09	24

* Where more than one wall thickness is given for a size, the lower value has been taken here ** Where more than one pressure rating is given for a size, the lower value has been taken here

Pipe lining

Lining	Poisson
Cement mortar	0.3
Ероху	0.36

Vehicular loading data		@1.2m deep	@3m deep
	Main Roads		
	Fields & Gardens		
	A40 Dump Truck	108.31	35.9
	Hitachi Large Excavator	77.59	18.93

General soil properties BS 9295 Section 6.6

		-
Κμ	0.19	
Кμ'	0.13	
γ	19.6	kN/m3

		SHEET No.		
Pipetechnics Itd.		4	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			Fields & Gardens	
	UNIT	SYMBOL	VALUE	7
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	27.21	Fields & Gardens
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	50.97	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
				_
Buckling		r		_
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m²	P _{cra}	0.01	
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	7.83	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	0.00	Fail (FOS<1)
Ovalisation & Bending Stress				-
Ovalisation, BS 9295 Equation 35		Δ/D	0.01046	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	1.05	OK (deflection<3%)
		m	0.008	
Hoop stress (Barlow)	kN/m ²		45070	
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

		SHEET No.		
Pipetechnics Itd.		5	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			A40 Dump Truck	
	UNIT	SYMBOL	VALUE	7
Loading				_
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	108.00	A40 Dump Truck
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	131.76	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	Ε'	5.00	
				_
Buckling				_
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	0.01	
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	3.06	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	0.00	Fail (FOS<1)
Ovalisation & Bending Stress				7
Ovalisation, BS 9295 Equation 35		Δ/D	0.02391	4
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.39	OK (deflection<3%)
		m	0.019	_
Hoop stress (Barlow)	kN/m ²		45070	4
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

		SHEET No.		
Pipetechnics Itd.		6	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			Large Excavator	
	UNIT	SYMBOL	VALUE	7
Loading				_
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	77.59	Large Excavator
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	101.35	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	Ε'	5.00	
				_
Buckling				_
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m²	P _{cra}	0.01	
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	3.98	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	0.00	Fail (FOS<1)
Ovalisation & Bending Stress				-
Ovalisation, BS 9295 Equation 35		Δ/D	0.01885	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	1.88	OK (deflection<3%)
		m	0.015	
Hoop stress (Barlow)	kN/m ²		45070	
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

									DOCUMENT No	
Pipetechnics Itd.			Р	T/AU/Calcs_1.2m	l					
PROJECT NO.					PRC	JECT TITLE				
			N/A				Augean	/ ENRMF	site	
				SUBJECT					SHEET No	
Ste	el Pipe	line Calo	culations	@ 1.2m co	over, w	all thickness	5.5mm	1	of	6
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	6	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3										
4 SUF	PERSEDES	DOC No						DATE		
DESIGN	BA: 0.01	200110						BATE		
Sou	urce of Info	D								
1. EN	RMF DCO	Application	Anglian Wate	Pipelines. T	able 1 Sc	oping Table for Sce	narios of Risk	Assessmen	t	
2.										
3.										
Sta	ndards an	d Referenc	es							
4. BS	9295:2020									
5.										
6. 7										
7.										
Rer	nit									

STEEL PRESSURE PIPELINE

VARIABLE INPUTS	Units	Symbol	Value	Notes (assumed values etc)
Pipe Properties				
Is this calculation for twin steel pipes laid in a single trench?			Yes	Select
Steel Grade			L235	Select pipe grade Assumed - worst case
Internal diameter (Nominal)	m	DN	0.8	Select pipe diameter
External diameter	m	Bc	0.811	
Wall thickness (standard for the diameter selected)	m	t	0.0071	From look up table
Wall thickness (choose)	m	t	0.0055	Type in value
Poisson's ratio (steel)		v _{steel}	0.3	
Type of pipe lining			Cement mortar	Select Assumed - worst case
Cement mortar lining thickness	m	tL	0.01	
Poisson's ratio (mortar)		v _{mortar}	0.3	
Weight of pipe + cement mortar		kg/m	219	
Poisson's ratio (epoxy)		V _{epoxy}	N/A	
Weight of pipe + epoxy		kg/m	N/A	
Modulus of Elasticity (steel)	MN/m ²	Е	207000	Standard value
Second moment of area of pipe wall	m⁴/m	1	1.38646E-08	
Pipe stiffness (no CM lining)	N/m ²	S	5491	
Density of mild steel	Kg/m ³		7850	Assumed
Yield Strength	MN/m2	Fy	235]
Installation variables				
Depth of cover	m	Н	1.2	ENRMF DCO application Table 1
Height of water above pipeline	m	Hw	0	No groundwater found in any borehole
Trench width	m	B _d	7	Assumed original trench width
Soil density	kN/m ³	γ	19.8	Typical value (BS EN 1295-1)
Native soil modulus	MN/m ²	E`3	5	Input soil modulus from BS 9295 Table 13 (stiff clay)
Modulus of surround	MN/m ²	E`2	5	BS 9295 Table 14 (Class B1 85% compacted gravel to pipe haunches)
Thickness of bedding	m		0.15	Assumed - standard value
Deflection lag factor		DL	1.5	BS 9295 Table 14 (85% compacted graded gravel)
Max pressure	bar	Pi	8	ENRMF DCO application Table 1
Min pressure - vacuum ONLY. If vacuum = 0, enter 0.01	bar	Pu	0.01	No vacuum
If twin pipes, spacing between pipes (OD to OD)	m	S	4.816	Leave blank if single pipe

SHEET No.

2 of 6

SHEET No. 3 of

6

Pipe Data

Source: FT Pipelines

https://ftpipelinesystems.co.uk/wp-content/uploads/2012/11/data-sheel-large-bore-welded-joints-nov2012.pdf

Internal diameter	Outside diameter	steel wall thickness*	Cement mortar lining thickness	Weight of pipe + CM lining	Weight of pipe + CM lining	Weight of pipe + epoxy lining	Weight of pipe + epoxy lining	Pressure rating**
m	m	m	m	kg/m	kN/m	kg/m	kN/m	Bar
0.08	0.0889	0.0036	0.003	11.4	0.11	8	0.08	123
0.1	0.1145	0.0036	0.003	14.6	0.14	10.2	0.10	95
0.15	0.1683	0.004	0.003	23.3	0.23	16.3	0.16	73
0.2	0.2191	0.0045	0.004	34.9	0.34	24.4	0.24	64
0.25	0.273	0.005	0.004	46.9	0.46	32.8	0.32	57
0.3	0.3239	0.0056	0.004	60.9	0.60	42.6	0.42	54
0.35	0.3556	0.0056	0.005	69.4	0.68	48.6	0.48	50
0.4	0.4064	0.0063	0.005	86.4	0.85	60.5	0.59	49
0.45	0.457	0.0063	0.006	77	0.76	55	0.54	33
0.5	0.508	0.0056	0.006	92	0.90	67	0.66	27
0.6	0.61	0.0063	0.008	130	1.28	82	0.80	26
0.7	0.711	0.0071	0.008	164	1.61	106	1.04	26
0.8	0.813	0.0071	0.01	219	2.15	136	1.33	25
0.9	0.914	0.008	0.01	266	2.61	171	1.68	25
1	1.016	0.0088	0.012	333	3.27	213	2.09	24
1.1	1.118	0.01	0.014	417	4.09	256	2.51	25
1.2	1.219	0.01	0.014	485	4.76	315	3.09	24

* Where more than one wall thickness is given for a size, the lower value has been taken here ** Where more than one pressure rating is given for a size, the lower value has been taken here

Pipe lining

Lining	Poisson
Cement mortar	0.3
Ероху	0.36

Vehicular loading data		@1.2m deep	@3m deep
	Main Roads		
	Fields & Gardens		
	A40 Dump Truck	108.31	35.9
	Hitachi Large Excavator	77.59	18.93

General soil properties BS 9295 Section 6.6

		SHEET No.		
Pipetechnics Itd.		4	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			Fields & Gardens	
	UNIT	SYMBOL	VALUE	7
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	27.21	Fields & Gardens
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	50.97	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
				_
Buckling				-
Critical buckling pressure, BS 9295 Equation 31	kN/m²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	6.09	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	5.32	OK (FOS>1)
Ovalisation & Bending Stress			0.04400	7
Ovalisation, BS 9295 Equation 35		Δ/D	0.01196	_
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Ŷ	1.20	OK (deflection<3%)
	1.1.1.2	m	0.010	-
Hoop stress (Barlow)	kN/m [*]		58182	
Factor of safety (against bursting)		FOS	4.04	OK (FOS>2)

		SHEET No.		
Pipetechnics ltd.		5	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			A40 Dump Truck	
	UNIT	SYMBOL	VALUE	7
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	108.00	A40 Dump Truck
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	131.76	7
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	7
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	Ε'	5.00	7
				_
Buckling		1 1		_
Critical buckling pressure, BS 9295 Equation 31	kN/m²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	2.39	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	5.32	OK (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02733	_
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.73	OK (deflection<3%)
		m	0.022	

kN/m²

FOS

Hoop stress (Barlow)

Factor of safety (against bursting)

58182

4.04

		SHEET No.		
Pipetechnics Itd.		6	of	6
CALCULATIONS IN ACCORDANCE WITH BS 9295 (2020)			Large Excavator	
	UNIT	SYMBOL	VALUE	7
Loading		•		_
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	23.76	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	77.59	Large Excavator
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	101.35	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	Ε'	5.00]
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	3.09	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	5.32	OK (FOS>1)
Ovalisation & Bendina Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02155	
Ratio of wall thickness to diameter		t/D	0.01	1
Ovalisation	%	Y	2.15	OK (deflection<3%)
		m	0.017	
Hoop stress (Barlow)	kN/m ²		58182	

4.04

OK (FOS>2)

Hoop stress (Barlow)

Factor of safety (against bursting)

						DOCUMENT No				
Pipetechnics Itd.			CALCULATION PACK				PT/AU/Calcs_3m			
PROJECT NO.				PRO				JECT TITLE		
			N/A				Augean	/ ENRM	F site	
				SUBJECT					SHEET No	
St	teel Pip	eline Cal	culations	@ 3m co	ver, wa	all thickness 7	7.1mm	1	of	6
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	6	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3										
4								DATE		
DESIG		DOC NO						DATE		
So	urce of Infe	D								
1. EN	RMF DCO	Application	Anglian Wate	Pipelines. Ta	able 1 Sc	oping Table for Sce	arios of Risk A	Assessment		
2.										
3.										
Sta	ndards an	d Referenc	es							
4. BS	9295:2020									
5.										
6.										
7.										
Rei	mit									

s 💦 s	HEET No.		
Pipetechnics ltd.	2	of	6

Design Scenario: Burial depth = 3m

STEEL PRESSURE PIPELINE

VARIABLE INPUTS	Units	Symbol	Value	Notes (assumed values etc)
Pipe Properties		-		
Is this calculation for twin steel pipes laid in a single trench?			Yes	Select
Steel Grade			L235	Select pipe grade Assumed - worst case
Internal diameter (Nominal)	m	DN	0.8	Select pipe diameter
External diameter	m	Bc	0.8142	
Wall thickness (standard for the diameter selected)	m	t	0.0071	From look up table
Wall thickness (choose)	m	t	0.0071	Type in value
Poisson's ratio (steel)		V _{steel}	0.3	
Type of pipe lining			Cement mortar	Select Assumed - worst case
Cement mortar lining thickness	m	tL	0.01	
Poisson's ratio (mortar)		V _{mortar}	0.3	
Weight of pipe + cement mortar		kg/m	219	
Poisson's ratio (epoxy)		V _{epoxy}	N/A	
Weight of pipe + epoxy		kg/m	N/A	
Modulus of Elasticity (steel)	MN/m ²	E	207000	Standard value
Second moment of area of pipe wall	m⁴/m	1	2.98259E-08	
Pipe stiffness (no CM lining)	N/m ²	S	11743	
Density of mild steel	Kg/m ³		7850	Assumed
Yield Strength	MN/m2	Fy	235]
Installation variables				
Depth of cover	m	Н	3	ENRMF DCO application Table 1
Height of water above pipeline	m	Hw	0	No groundwater found in any borehole
Trench width	m	B _d	7	Assumed original trench width
Soil density	kN/m ³	γ	19.8	Typical value (BS EN 1295-1)
Native soil modulus	MN/m ²	E`3	5	Input soil modulus from BS 9295 Table 13 (stiff clay)
Modulus of surround	MN/m ²	E`2	5	BS 9295 Table 14 (Class B1 85% compacted gravel to pipe haunches)
Thickness of bedding	m		0.15	Assumed - standard value
Deflection lag factor		DL	1.5	BS 9295 Table 14 (85% compacted graded gravel)
Max pressure	bar	Pi	8	ENRMF DCO application Table 1
Min pressure - vacuum ONLY. If vacuum = 0, enter 0.01	bar	Pu	0.01	No vacuum
If twin pipes, spacing between pipes (OD to OD)	m	S	4.816	Leave blank if single pipe

	SHEET No.		
Pipetechnics Itd.	3	of	6

Pipe Data

Source: FT Pipelines

https://ftpipelinesystems.co.uk/wp-content/uploads/2012/11/data-sheel-large-bore-welded-joints-nov2012.pdf

		steel wall	Cement mortar	Weight of pipe +	Pressure			
Internal diameter	Outside diameter	thickness*	lining thickness	CM lining	CM lining	epoxy lining	epoxy lining	rating**
m	m	m	m	kg/m	kN/m	kg/m	kN/m	Bar
0.08	0.0889	0.0036	0.003	11.4	0.11	8	0.08	123
0.1	0.1145	0.0036	0.003	14.6	0.14	10.2	0.10	95
0.15	0.1683	0.004	0.003	23.3	0.23	16.3	0.16	73
0.2	0.2191	0.0045	0.004	34.9	0.34	24.4	0.24	64
0.25	0.273	0.005	0.004	46.9	0.46	32.8	0.32	57
0.3	0.3239	0.0056	0.004	60.9	0.60	42.6	0.42	54
0.35	0.3556	0.0056	0.0071	69.4	0.68	48.6	0.48	50
0.4	0.4064	0.0063	0.005	86.4	0.85	60.5	0.59	49
0.45	0.457	0.0063	0.006	77	0.76	55	0.54	33
0.5	0.508	0.0056	0.006	92	0.90	67	0.66	27
0.6	0.61	0.0063	0.008	130	1.28	82	0.80	26
0.7	0.711	0.0071	0.008	164	1.61	106	1.04	26
0.8	0.813	0.0071	0.01	219	2.15	136	1.33	25
0.9	0.914	0.008	0.01	266	2.61	171	1.68	25
1	1.016	0.0088	0.012	333	3.27	213	2.09	24
1.1	1.118	0.01	0.014	417	4.09	256	2.51	25
1.2	1.219	0.01	0.014	485	4.76	315	3.09	24

* Where more than one wall thickness is given for a size, the lower value has been taken here ** Where more than one pressure rating is given for a size, the lower value has been taken here

Pipe lining

Lining	Poisson
Cement mortar	0.3
Ероху	0.36

Vehicular loading data

@1. р

2m deep @3m dee

	G TITU Geeb	e onn acce
Main Roads	1	
Fields & Gardens		
A40 Dump Truck	108.31	35.9
Hitachi Large Excavator	77.59	18.93

General soil properties BS 9295 Section 6.6

Κμ	0.19	
Κμ'	0.13	
γ	19.6	kN/m3

	SHEET No.			
Pipetechnics Itd.	4	of	6	

Fields & Gardens

	UNIT	SYMBOL	VALUE	
Loading				_
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	5.47	Fields & Gardens
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	64.87	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	Τ
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	0.01	
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	6.18	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	ОК (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.01968	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	1.97	OK (deflection<3%)
		m	0.016	
Hoop stress (Barlow)	kN/m ²		45070	
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

-

	SHEET No.			
Pipetechnics ltd.	5	of	6	

A40 Dump Truck

	UNIT	SYMBOL	VALUE	
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	35.90	A40 Dump Truck
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	95.30	1
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
Buckling				_
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	0.01	1
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	4.23	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	ОК (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02601	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.60	OK (deflection<3%)
		m	0.021	
Hoop stress (Barlow)	kN/m ²		45070	
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

	SHEET No.		
Pipetechnics Itd.	6	of	6

Large Excavator

	UNIT	SYMBOL	VALUE	
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	18.93	Large Excavator
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	78.33	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00]
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	406.90	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	0.01	
Stiffness of pipe	kN/m ²		11.74	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	5.13	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	OK (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02248	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.25	OK (deflection<3%)
		m	0.018	
Hoop stress (Barlow)	kN/m ²		45070	
Factor of safety (against bursting)		FOS	5.21	OK (FOS>2)

									DOCUMENT No	
	Pipetec	nnics Itd.		CAL	CUL	ATION P	PACK		PT/AU/Calcs_3m	
		PRO	DJECT NO.				PRC	JECT TITLE		
			N/A				Augean	/ ENRM	F site	
				SUBJECT					SHEET No	
St	teel Pip	eline Cal	culations	@ 3m co	ver, wa	all thickness {	5.5mm	1	of	6
ISSUE	TOTAL SHEET (S)	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE		COMMENTS	
1	6	SJRD	24/05/22	SJRD	27/05/2	22		First Draft		
2										
3										
4								DATE		
DESIG		DOC NO						DATE		
So	urce of Infe	b								
1. EN	RMF DCO	Application	Anglian Water	Pipelines. Ta	able 1 Sc	oping Table for Scea	arios of Risk A	Assessment	:	
2.										
3.										
Sta	ndards an	d Referenc	es							
4. BS	9295:2020									
5.										
6.										
7.										
Rei	mit									

	SHEET No.		
Pipetechnics Itd.	2	of	6

Design Scenario: Burial depth = 3m

STEEL PRESSURE PIPELINE

VARIABLE INPUTS	Units	Symbol	Value	Notes (assumed values etc)
Pipe Properties				
Is this calculation for twin steel pipes laid in a single trench?			Yes	Select
Steel Grade			L235	Select pipe grade Assumed - worst case
Internal diameter (Nominal)	m	DN	0.8	Select pipe diameter
External diameter	m	Bc	0.811	
Wall thickness (standard for the diameter selected)	m	t	0.0071	From look up table
Wall thickness (choose)	m	t	0.0055	Type in value
Poisson's ratio (steel)		v _{steel}	0.3	
Type of pipe lining			Cement mortar	Select Assumed - worst case
Cement mortar lining thickness	m	tL	0.01	
Poisson's ratio (mortar)		V _{mortar}	0.3	
Weight of pipe + cement mortar		kg/m	219	
Poisson's ratio (epoxy)		V _{epoxy}	N/A	
Weight of pipe + epoxy		kg/m	N/A	
Modulus of Elasticity (steel)	MN/m ²	Е	207000	Standard value
Second moment of area of pipe wall	m⁴/m	1	1.38646E-08	
Pipe stiffness (no CM lining)	N/m ²	S	5491	
Density of mild steel	Kg/m ³		7850	Assumed
Yield Strength	MN/m2	Fy	235]
Installation variables				
Depth of cover	m	Н	3	ENRMF DCO application Table 1
Height of water above pipeline	m	H _w	0	No groundwater found in any borehole
Trench width	m	B _d	7	Assumed original trench width
Soil density	kN/m ³	γ	19.8	Typical value (BS EN 1295-1)
Native soil modulus	MN/m ²	E`3	5	Input soil modulus from BS 9295 Table 13 (stiff clay)
Modulus of surround	MN/m ²	E`2	5	BS 9295 Table 14 (Class B1 85% compacted gravel to pipe haunches)
Thickness of bedding	m		0.15	Assumed - standard value
Deflection lag factor		DL	1.5	BS 9295 Table 14 (85% compacted graded gravel)
Max pressure	bar	Pi	8	ENRMF DCO application Table 1
Min pressure - vacuum ONLY. If vacuum = 0, enter 0.01	bar	Pu	0.01	No vacuum
If twin pipes, spacing between pipes (OD to OD)	m	S	4.816	Leave blank if single pipe

	SHEET No.		
Pipetechnics Itd.	3	of	6

Pipe Data

Source: FT Pipelines

https://ftpipelinesystems.co.uk/wp-content/uploads/2012/11/data-sheel-large-bore-welded-joints-nov2012.pdf

Internal diameter	Outside diameter	steel wall thickness*	Cement mortar lining thickness	Weight of pipe + CM lining	Weight of pipe + CM lining	Weight of pipe + epoxy lining	Weight of pipe + epoxy lining	Pressure rating**
m	m	m	m	kg/m	kN/m	kg/m	kN/m	Bar
0.08	0.0889	0.0036	0.003	11.4	0.11	8	0.08	123
0.1	0.1145	0.0036	0.003	14.6	0.14	10.2	0.10	95
0.15	0.1683	0.004	0.003	23.3	0.23	16.3	0.16	73
0.2	0.2191	0.0045	0.004	34.9	0.34	24.4	0.24	64
0.25	0.273	0.005	0.004	46.9	0.46	32.8	0.32	57
0.3	0.3239	0.0056	0.004	60.9	0.60	42.6	0.42	54
0.35	0.3556	0.0056	0.005	69.4	0.68	48.6	0.48	50
0.4	0.4064	0.0063	0.005	86.4	0.85	60.5	0.59	49
0.45	0.457	0.0063	0.006	77	0.76	55	0.54	33
0.5	0.508	0.0056	0.006	92	0.90	67	0.66	27
0.6	0.61	0.0063	0.008	130	1.28	82	0.80	26
0.7	0.711	0.0071	0.008	164	1.61	106	1.04	26
0.8	0.813	0.0071	0.01	219	2.15	136	1.33	25
0.9	0.914	0.008	0.01	266	2.61	171	1.68	25
1	1.016	0.0088	0.012	333	3.27	213	2.09	24
1.1	1.118	0.01	0.014	417	4.09	256	2.51	25
1.2	1.219	0.01	0.014	485	4.76	315	3.09	24

* Where more than one wall thickness is given for a size, the lower value has been taken here ** Where more than one pressure rating is given for a size, the lower value has been taken here

Pipe lining

Lining	Poisson
Cement mortar	0.3
Ероху	0.36

Vehicular loading data

@1. р

2m deep @3m dee

	C	U
Main Roads		
Fields & Gardens		
A40 Dump Truck	108.31	35.9
Hitachi Large Excavator	77.59	18.93

General soil properties BS 9295 Section 6.6

Κμ	0.19	
Κμ'	0.13	
γ	19.6	kN/m3

	SHEET No.			
Pipetechnics Itd.	4	of	6	

Fields & Gardens

	UNIT	SYMBOL	VALUE	
Loading		•		
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	5.47	Fields & Gardens
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	64.87	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	Ε'	5.00	
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	1
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	4.81	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	OK (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02250	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.25	OK (deflection<3%)
		m	0.018	
Hoop stress (Barlow)	kN/m ²		58182	
Factor of safety (against bursting)		FOS	4.04	OK (FOS>2)

-

	SHEET No.			
Pipetechnics Itd.	5	of	6	

A40 Dump Truck

_

	UNIT	SYMBOL	VALUE	
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	35.90	A40 Dump Truck
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	95.30	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
	_			
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	3.29	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	OK (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02973	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.97	OK (deflection<3%)
		m	0.024	
Hoop stress (Barlow)	kN/m ²		58182	
Factor of safety (against bursting)		FOS	4.04	OK (FOS>2)

	SHEET No.		
Pipetechnics Itd.	6	of	6

Large Excavator

	UNIT	SYMBOL	VALUE	
Loading				
Backfill pressure, BS 9295 Equation 27	kN/m ²	Pe	59.40	
Road traffic loading, BS 9295 Section 5.3	kN/m ²	Ps	18.93	Large Excavator
Total vertical pressure, BS 9295 Equation 28	kN/m ²	Р	78.33	
Leonhardt's coefficient, BS 9295 Equation 29		CL	1.00	
Overall modulus of soil reaction, BS 9295 Equation 30	MN/m ²	E'	5.00	
Buckling				
Critical buckling pressure, BS 9295 Equation 31	kN/m ²	P _{cr}	316.63	
Unconstrained buckling pressure, BS 9295 Equation 34	kN/m ²	P _{cra}	131.79	
Stiffness of pipe	kN/m ²		5.49	
Deflection lag factor		DL	1.50	
Factor of safety (buckling - with soil support), BS 9295 Equation 32, pg 52		FOS	3.99	OK (FOS>2)
Factor of safety (buckling - without soil support), BS 9295 Equation 33		FOS	no calc reqd	OK (FOS>1)
Ovalisation & Bending Stress				
Ovalisation, BS 9295 Equation 35		Δ/D	0.02570	
Ratio of wall thickness to diameter		t/D	0.01	
Ovalisation	%	Y	2.57	OK (deflection<3%)
		m	0.021	
Hoop stress (Barlow)	kN/m ²		58182	
Factor of safety (against bursting)		FOS	4.04	OK (FOS>2)